ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC

NGUYỄN THỊ MINH HÀ

CHẾ TẠO VÀ NGHIÊN CỨU TÍNH CHẤT QUANG , TỪ CỦA HỆ VẬT LIỆU CaFexMn1-xO3 (x < 5 %)

LUẬN VĂN THẠC SĨ VẬT LÝ

THÁI NGUYÊN, 10/2019

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC

NGUYỄN THỊ MINH HÀ

CHẾ TẠO VÀ NGHIÊN CỨU TÍNH CHẤT QUANG , TỪ CỦA HỆ VẬT LIỆU CaFexMn1-xO3 (x < 5 %)

Chuyên ngành: **Quang học** Mã số: **84 40 110**

LUẬN VĂN THẠC SĨ VẬT LÝ

Người hướng dẫn khoa học: TS. Phạm Thế Tân TS. Nguyễn Văn Hảo

THÁI NGUYÊN, 10/2019

LỜI CẢM ƠN

Trước tiên, tôi xin gửi lời cảm ơn và bày tỏ lòng biết ơn sâu sắc đến các Thầy TS. Phạm Thế Tân và TS. Nguyễn Văn Hảo đã tận tình giúp đỡ, hỗ trợ, hướng dẫn tôi trong suốt quá trình thực hiện và hoàn thành luận văn này.

Xin trân trọng cám ơn các Thầy, cô Trường Đại học Khoa học – Đại học Thái Nguyên đã giảng dạy, hướng dẫn tôi trong suốt chương trình học cao học.

Cám ơn các Thầy, cô ở các đơn vị: Khoa Vật lý Kỹ thuật và Công nghệ Nano - Trường ĐH Công nghệ - ĐHQGHN, Trung tâm Khoa học Vật liệu, Khoa Vật lý- Trường Đại học Khoa học Tự nhiên - Đại học Quốc gia Hà Nội, các thầy cô Khoa Công nghệ Hóa học và môi trường thuộc Trường Đại học Sư phạm Kỹ thuật Hưng Yên... đã tận tình giúp đỡ tạo điều kiện thuận lợi cho tôi trong quá trình học tập, nghiên cứu, thực hành thí nghiệm để thực hiện luận văn này.

Cuối cùng tôi xin cảm ơn toàn thể gia đình và bạn bè đã giúp đỡ và động viên tôi trong suốt quá trình học tập.

Thái Nguyên, ngày 05 tháng 10 năm 2019

Học viên

Nguyễn Thị Minh Hà

MU	C	LU	C
•		•	

LỜI CẢM ƠN	i
MŲC LŲC	ii
DANH MỤC CÁC TỪ VIẾT TẮT	iv
DANH MỤC CÁC BẢNG BIẾU	vi
DANH MỤC CÁC HÌNH ẢNH, HÌNH VẼ	vii
MỞ ĐẦU	1
Chương 1. TỔNG QUAN VỀ VẬT LIỆU PEROVSKITE MANGAN	(TE 4
1.1. Cấu trúc tinh thể của perovskite	4
1.2. Sơ đồ cấu trúc điện tử trong trường ion bát diện	7
1.3. Phân loại các tương tác từ trong oxít kim loại	8
1.3.1. Tương tác RKKY (viết tắt từ Ruderman–Kittel–Kasuya–Yosl	nida):. 8
1.3.2. Tương tác siêu trao đổi (Super-Exchange, SE):	9
1.3.3. Tương tác trao đổi kép (Double–Exchange, DE)	9
1.4. Hệ vật liệu perovskite CaMnO3 pha tạp Fe	9
1.5. Tổng quan về chất lỏng nano (dung dịch nano)	13
Chương 2. CÁC PHƯƠNG PHÁP NGHIÊN CỨU	16
2.1. Phương pháp thực nghiệm chế tạo mẫu	16
2.1.1.Phương pháp phản ứng pha rắn	16
2.1.2. Phương pháp hoá siêu âm	19
2.1.3. Phương pháp lắng đọng hóa học CSD	
2.1.4. Chế tạo hệ vật liệu perovskite CaMnO ₃	
2.1.5. Chế tạo hệ mẫu CaFe _x Mn _{1-x} O ₃ (x = 0,00; 0,01; 0,03; 0,05)	23
2.1.6. Chế tạo dung dịch hạt nano CaFe _x Mn _{1-x} O ₃	
2.2. Các phương pháp nghiên cứu	
2.2.1. Phương pháp nhiễu xạ tia X (X-Ray Diffraction, XRD)	
2.2.2. Kính hiển vi điện tử quét (SEM)	

2.2.3.Phổ tán xạ Raman	. 28
2.2.4. Phương pháp từ kế mẫu rung (VSM)	. 30
2.2.5. Phương pháp phổ hấp thụ UV-VIS	. 31
2.2.6. Phương pháp phổ huỳnh quang	. 33
Chương 3.KẾT QUẢ VÀ THẢO LUẬN	. 37
3.1. Các kết quả thực nghiệm trên hệ gốm perovskite CaMnO3	. 37
3.1.1.Kết quả nghiên cứu cấu trúc hệ perovskite CaMnO ₃	. 37
3.1.2. Kết quả đo từ độ phụ thuộc nhiệt độ của hệ CaMnO ₃	. 38
3.1.3. Nghiên cứu phổ tán xạ Raman của hệ CaMnO ₃	. 38
3.2. Kết quả nghiên cứu tính chất hệ vật liệu perovskite CaFe _x Mn _{1-x} O ₃	.43
3.2.1.Nghiên cứu cấu trúc đối với hệ mẫu CaFe _x Mn _{1-x} O ₃ (x=0,00; 0,01; 0,03; 0,05)	. 43
3.2.2. Nghiên cứu tính chất từ của hệ mẫu CaFe _x Mn _{1-x} O ₃ (x = 0,00; 0,01; 0,03; 0,05)	. 47
3.2.3. Nghiên cứu phổ Raman của hệ mẫu CaFe _x Mn _{1-x} O ₃ (x=0,00; 0,01; 0,03; 0,05)	. 49
3.2.4. Nghiên cứu phổ hấp thụ :	. 52
3.3. Kết quả nghiên cứu hệ chất lỏng nano CaFe _{0,05} Mn _{0,95} O ₃	. 55
3.3.1. Kết quả đo hình thái hạt (SEM).	. 55
3.3.2. Phổ hấp thụ UV-VIS của các mẫu chất lỏng hạt nano CaFe0,05Mn0,95O3	56
3.3.3.Phổ phát xạ huỳnh quang của các mẫu chất lỏng hạt nano CaFe _{0,05} Mn _{0,95} O ₃	. 58
3.3.4. Nghiên cứu phổ huỳnh quang trong từ trường của chất lỏng	
$CaFe_{0,05}Mn_{0,95}O_3$. 60
KÊT LUẬN	. 63
TÀI LIỆU THAM KHẢO	. 65

DANH MỤC CÁC TỪ VIẾT TẮT

Viết tắt	Nghĩa tiếng Anh	Nghĩa tiếng Việt
AFM	Antiferromagnetic	Tương tác phản sắt từ
A–AF	A-type antiferromagnetic	Phản sắt từ loại A
G-AF	G-type antiferromagnetic	Phản sắt từ loại G
C–AF	C-type antiferromagnetic	Phản sắt từ loại C
GMRE	Giant magnetoresistance effect	Hiệu ứng từ trở lớn
CMR	Collosal Magnetoresistance	Hiệu ứng từ trở khổng lồ
AFI	Antiferromagnetic Insulator	Phản sắt từ điện môi
CO	Charge Ordering	trật tự điện tích
DE	Double Exchange	tương tác trao đổi kép
DOS	density of states	Hàm mật độ trạng thái
FM- domain	Ferromagnetic-domain	Domain sắt từ
FMM	Ferromagnetic metallic materials	Vật liệu sắt từ với tính dẫn kim loại
J _{Mn-Mn}		Độ lớn của tích phân trao đổi Mn–Mn
JT	Jahn - Teller transition	Hiệu ứng/méo mạng/tách mức Jahn – Teller
MCE	Magnetocaloric Effect	Hiệu ứng từ nhiệt
MI	Mettal-Isulating	Kim loại – điện môi
MR	Magnetoresistance	Hiệu ứng từ trở

PM	Paramagnetic	Thuận từ
PMI	Paramagnetic materials insulating	Vật liệu thuận từ điện môi
RE	Rare earth	Đất hiếm
RKKY	Ruderman–Kittel–Kasuya– Yoshida	Tương tác trao đổi gián tiếp giữa ion từ và các electron vùng dẫn
SEM	Scanning Electron Microscopy	Kính hiển vi điện tử quét
SE	Super Exchange	Tương tác siêu trao đổi
Spin glass		Trạng thái thủy tinh spin
TM	Transition mettal	Kim loại chuyển tiếp
T _C	Curie temperature	Nhiệt độ chuyển pha Curie
T _N	Neel temperature	Nhiệt độ chuyển pha Neel
XRD	XRD X-Ray diffraction	Nhiễu xạ tia X
UV-Vis	Untra violet- Visible	Vùng tử ngoại khả kiến

DANH MỤC CÁC BẢNG BIỂU

Bảng 3.1 . Một số kết quả thực nghiệm các mode dao động của $CaMnO_3$ 40
Bảng 3.2 . Nhóm không gian và vị trí các nguyên tử trong ô cơ sở đối với từng kiểu méo mạng cơ bản
Bảng 3.3. Cấu trúc ô mạng của hệ CFMO và so sánh với trường hợp CaMnO ₃ 45
Bảng 3.4. Các hằng số mạng, độ dài liên kết trung bình và tích phân trao đổi của các mẫu CaFe _x Mn _{1-x} O ₃ 45
Bảng 3.5 . Các giá trị tính toán T_N theo độ rộng vùng cấm của hệ CaFe _x Mn _{1-x} O ₃ 48
Bảng 3.6. Các giá trị thực nghiệm và tính toán cho các mode dao động của51
Bảng 3.7 . Độ rộng vùng cấm của các mẫu CaFe _x Mn _{1-x} O ₃ với x =0, 1, 3, 5 %54

DANH MỤC CÁC HÌNH ẢNH, HÌNH VĨ

Hình	1.1. Cấu trúc ô mạng lập phương tâm mặt lý tưởng của perovskite (a) và sự
	sắp xếp của các bát diện trong cấu trúc lý tưởng này (b)4
Hình	1.2 . Sơ đồ tách mức năng lượng trong trường ion bát diện O_h (a) và năm quỹ đạo
	lớp d của các kim loại chuyển tiếp (b) [13] trong trường ion bát diện O _h
Hình	1.3 . Sự phụ thuộc nhiệt độ của hệ số từ hóa nghịch đảo11
Hình	1.4. Đường cong M(H) của các mẫu CaFe _x Mn _{1-x} O ₃ 11
Hình	1.5 . Sự phụ thuộc của hằng số mạng vào nồng độ Fe pha tạp [16]12
Hình	1.6 . Sự phụ thuộc của thể tích ô cơ sở vào nồng độ Fe pha tạp [16]12
Hình	2.1 . Sơ đồ chế tạo mẫu bằng phương pháp gốm16
Hình	2.2 . Quá trình thay đổi kích thước bọt19
Hình	2.3. Quá trình lắng đọng hóa học CSD21
Hình	2.4. Quy trình chế tạo mẫu gốm CaMnO ₃ 22
Hình	2.5 . Sơ đồ chế tạo dung dịch trong suốt Ca(FeMn)O ₃ 24
Hình	2.6 . Sơ đồ tạo dung môi Span25
Hình	2.7 . Sơ đồ tạo mẫu dung dịch nano25
Hình	2.8 . Sơ đồ minh họa trên tinh thể và sơ đồ khối thiết bị nhiễu xạ tia X26
Hình	2.9. Sơ đồ khối của kính hiển vi điện tử quét (SEM)27
Hình	2.10 . Sơ đồ minh hoạ quá trình tán xạ Rayleigh và tán xạ Raman
Hình	2.11 . Sơ đồ nguyên lý của thiết bị VSM31
Hình	2.12 . Hệ đo phổ hấp thụ 3101PC
Hình	2.13. Sơ đồ chuyển dời quang học của các phân tử
Hình	2.14. Hệ đo huỳnh quang FL3-22-Jobin-Yvon-Spex

Hình	3.1 . Giản đồ nhiễu xạ tia X của mẫu gốm CaMnO ₃ 37
Hình	3.2 . Đường cong từ nhiệt của mẫu Ca MnO_3 tại từ trường ngoài 500 Gauss 38
Hình	3.3 . Sự phụ thuộc của (- dM/dT) vào nhiệt độ đối với hệ mẫu Ca MnO_3 38
Hình	3.4 . Phổ tán xạ Raman của gốm CaMnO ₃ ở 632,8 nm (so sánh với [29]) 39
Hình	3.5. Giản đồ nhiễu xạ tia X của mẫu CaFe _x Mn _{1-x} O ₃ tổng hợp theo phương pháp phản ứng pha rắn
Hình	3.6 . Sự phụ thuộc của tích phân trao đổi của hệ $CaFe_xMn_{1-x}O_3$ theo x47
Hình	3.7 . Đường cong từ nhiệt của các mẫu CaFe _x Mn _{1-x} O ₃ tại từ trường ngoài 500G
Hình	3.8 . Sự phụ thuộc (dM/dT) của các mẫu CaFe _x $Mn_{1-x}O_3$ vào nhiệt độ48
Hình	3.9. Phổ tán xạ Raman của hệ CaFe _x Mn _{1-x} O ₃ ở 300K (λ_{He-Ne} =632,8 nm). Hình nhỏ phía trên từ TLTK [33]
Hình	3.10 . Sự dịch đỉnh hấp thụ khi nồng độ pha tạp tăng53
Hình	3.11 . Mật độ trạng thái điện tử54
Hình	3.12 . Ảnh SEM của các mẫu CaFe _{0,05} Mn _{0,95} O ₃ ở trạng thái rắn và trạng thái lỏng
Hình	3.13. Phổ hấp thụ của mẫu CaFe _{0,05} Mn _{0,95} O ₃ 57
Hình	3.14 . Phổ huỳnh quang của mẫu CaFe _{0.05} Mn _{0.95} O ₃
Hình	3.15. Phát xạ của chất lỏng nano sắt từ suy giảm theo thời gian trong môi trường từ tính
Hình	3.16. Cực đại phổ phát xạ suy giảm theo thời gian khi đặt trong môi trường từ tính